
SRC Technical Note

1997-3

May 6, 1997

Hypermedia Presentation and Authoring System

Jin Yu and Yuanyuan Xiang

Systems Research Center
130 Lytton Avenue

Palo Alto, CA 94301
http://www.research.digital.com/SRC/

Copyright 1997 Digital Equipment Corporation. All rights reserved

1. Introduction

The tremendous growth in the number of Internet applications is driven by the use of rich media such as images,
audio, and videos for representing and exchanging information. The result is the merging of hypertext and
multimedia, or hypermedia. Hypermedia documents (eg. HTML files) function as containers for hypermedia
objects, which are network transparent entities with a variety of media types, such as MPEG, GIF, RTF, etc.
The composition and presentation of hypermedia documents presents us with many new challenges, because of
the dynamic nature of multimedia and the large variety of media types. Specifically, a hypermedia system must
meet the following requirements [1]:

1. high-level temporal synchronization between hypermedia objects
2. the provision of time-dependent spatial synchronization within the hypermedia document architecture
3. the integration and transparent handling of various media types
4. network transparency in document and object retrieval
5. a simple but powerful user interface manipulating the temporal and spatial information within the

hypermedia document

1 of 14

Existing HTML authoring and browsing tools provide static spatial management by using relative geometry based
on the underlying text. Emerging technologies such as Java Applets, JavaBeans, and Netscape Plug-ins extend
the basic capabilities of HTML tools. However, the combination of the technologies and the HTML tools is still
not sufficient to represent temporal-based multimedia presentations with associated dynamic spatial layout,
because they are constrained by the static nature of HTML. Although many extensions have been made, HTML
still provides primarily static layout controls.

Our approach eliminates the traditional concept of page, and provides temporal synchronization of distributed
media objects within a hypermedia document. With this approach, our system allows the spatial layout of the
document to be changed dynamically with respect to time. In addition, the integration of the browsing and
authoring environment gives users a powerful yet simple way to graphically construct and manage hypermedia
objects and their containing documents.

The HPAS environment supports the structure-based composition and the dynamic presentation of the HPA
(Hypermedia Presentation/Authoring) document architecture, which conforms to the SGML standard. An HPA
document is composed of a list of HPA objects, which are identified by Uniform Resource Locators [4]. Each
object can have an associated media stream (but this is not required) with an appropriate MIME type. In
addition, the objects within the document are temporally related and every object carries its own spatial layout
information.

The next section outlines the architecture of the system. Sections 3 and 4 discuss the temporal and spatial
management. Section 5 describes HPA objects in detail. Finally, we briefly discuss the implementation issues and
future work in sections 6 and 7.

2. Architecture and System Overview

The global picture of HPAS is shown in Fig.1. The presentation subsystem comprises the components on the left
hand side, and the authoring subsystem comprises the components on the right hand side. The temporal and
spatial managers are shared by both subsystems. The network manager provides both uploading and
downloading services to the rest of the system. Our model permits multiple instances of those components. For
example, several browser windows, or presentation managers may be active at the same time.

The presentation subsystem is the browser part of HPAS. Coordinating with the temporal and spatial manager,
the presentation manager drives the various object presenters to display objects into the browser window. The
authoring subsystem allows authors to graphically construct HPA documents. The composition manager
communicates with temporal and spatial managers to synchronize the objects within HPA documents. It also
manages the object editors, which are responsible for the authoring of object media data.

2 of 14

3. Temporal Synchronization

A crucial step in designing multimedia applications is to guarantee that the composition of multiple monomedia is
synchronized temporally. There are two distinguished time synchronization levels between objects in a
hypermedia document, namely low-level media-specific synchronization and high-level interobject
synchronization. The low-level synchronization requires media-specific timing constraints to be satisfied. For
example, speech (audio) should match the motion of lips (video). On the other hand, the interobject
synchronization specifies only the temporal constraints of the construction, lifetime, and destruction of objects.
Currently, we are concerned only with interobject synchronization, because low-level synchronization requires the
knowledge of specific media types.

Traditionally, there have been several approaches to achieving temporal synchronization between objects.
Scripting-based systems allow authors to explicitly program timing information. During presentation, the systems
interpret the scripts and perform actions specified in the scripts. This approach is powerful, but usually requires
proficiency in programming, which severely limits the range of authors. Timeline-based systems model a
conceptual timeline. Authors simply place objects to be presented on this timeline. However, since this approach
requires objects to be placed relative to the time axis, it is not well suited for operations such as moving, copying,
or deleting parts of the presentation. Furthermore, neither of the approaches allows direct and intuitive
manipulations of the temporal structure of the hypermedia document. In our approach, temporal information is
described in terms of object relations; that is, each object is described in terms of other related objects. This is
well suited for presentations with distributed media objects, since the elapsed time of each object depends on
both the network bandwidth and CPU speed. In addition, HPAS also provides users with a powerful interface to

3 of 14

access and manipulate the temporal information in HPA documents. The following sections describe the temporal
synchronization mechanism in detail.

3.1 Temporal Interval and MRG

In our framework, each object is associated with a temporal interval, which is characterized as a nonzero
duration of time in seconds. Given any two temporal intervals, there are thirteen mutually exclusive relationships
[2]. According to Little and Ghafoor [7], the temporal relations can be represented as Fig.2a. The figure shows
only seven of the thirteen relations since the remaining ones are inverse relations. For instance, after is the inverse
relation of before.

To represent our temporal model, we define a set of links between two objects, p1 and p2:

(p1 SerialLink p2): the temporal interval I(p1) meets I(p2). In other words, p1 is the parent of p2, and p2 is
the child of p1.
(p1 StartSync p2): the temporal interval I(p1) and I(p2) share the same starting point.
(p1 EndSync p2): the temporal interval I(p1) and I(p2) share the same ending point.

4 of 14

Besides links, each object has a user-defined attribute `time to live', or ttl, which specifies how long the object
may be active on the screen. In addition, our model also defines the notion of dummy object. A dummy object
does not have any content, nor does it have an associated type. Such an object can be used to represent a time
delay by defining its ttl attribute.

With the definitions of SerialLink, StartSync, EndSync, ttl, and dummy object, we can now introduce the
notion of Media Relation Graph (MRG), as shown in Fig.2b. The MRG in Fig.2b corresponds to the temporal
relations illustrated in [7] (Fig.2a). In our MRG, a one-way arrow denotes the SerialLink operator, where the
left hand side operand is the object at the starting end of the arrow and the right hand side operand is the object
being pointed to by the arrow. Similarly, the StartSync operator is denoted by a two-way solid arrow, and the
EndSync operator is represented by a two-way dashed arrow. Finally, a rectangular node represents a regular
object and a round node represents a dummy object. By using the notions of SerialLink, StartSync, EndSync,
ttl, and dummy object, we can use MRG to represent all the thirteen temporal relationships defined by Allen [2].

3.2 Object Activation and Deactivation

This section describes the object activation and deactivation policies. Before we state the policies, several
concepts need to be defined:

The activation time of an object, or atime, is the time when the object appears on the screen. At that
time, the object is said to be activated.
The deactivation time of an object, or dtime, is the time when the object disappears from the screen.
At that time, the object is said to be deactivated.
The elapsed time of an object, or etime, is the difference between dtime and atime; etime is said to be
the temporal interval of the object.
The content time, or ctime of an object, is the time needed to present the object's entire media stream.

Note that if an object's ttl value is greater than its ctime, it will stay idly on the screen after ctime is reached and
before ttl is expired.

We also define the starting point of an HPA presentation to be the root object, which is a dummy object with the
value of its ttl attribute being zero. The root object is deactivated once the presentation starts. In addition, for
every object in the presentation (excluding the root object itself), an implicit SerialLink exists between the root
and the object.

Now we can introduce the activation and deactivation policies:

An object may be activated if both of the following hold:
1. The object's parents and the parents' EndSync peers are all deactivated.
2. All of the object's StartSync peers satisfy the condition above.

Object deactivation is governed by the following rules:
1. The object must be deactivated with all of its EndSync peers at the same time.
2. For the object and all of its EndSync peers, etime is greater than or equal to ttl.
3. The priority of ttl is higher than that of ctime.
4. If ttl is not specified, the value of ctime is assigned to it.

Even at the time that both activation policies are satisfied, the system might not be able to activate the object

5 of 14

immediately, since at that time the object's media stream may not be readily available from the network. This
situation will be explained further in section 6.

3.3 MRG Example

Let's consider the following sample code from an HPA file:

<obj id = 0 name = "Root" ...
 serialLink = '1 2 3' timeToLive = 0> </obj>
<obj id = 1 name = "Bird Show" type = "video/mpeg" ...
 startSync = '2 3' endSync = '2' timeToLive = 10> </obj>
<obj id = 2 name = "Bird Walk" type = "video/mpeg" ...
 serialLink = '5' startSync = '1' endSync = '1' timeToLive = 6> </obj>
<obj id = 3 name = "Dummy" ...
 serialLink = '4' startSync = '1' timeToLive = 4> </obj>
<obj id = 4 name = "Bird Intro" type = "text/html" ...
 endSync = '6' timeToLive = 20> ... </obj>
<obj id = 5 name = "Seagull" type = "image/gif" ...
 seriallink = '6' timeToLive = 5> </obj>
<obj id = 6 name = "Bird Song" type = "audio/basic" ...
 endSync = '4' timeToLive = 5> </obj>

In the code segment above, each obj element describes an HPA object. The serialLink attribute of an object
specifies the object's children, which are represented by the list of object IDs. The syntaxes of startSync and
endSync are identical to that of serialLink. Object IDs are a sequence of non-negative integers starting from
zero, which represents the root object. The composition manager is responsible for assigning object IDs.

Table 1 shows another representation of the objects described in the code fragment, and Table 2 illustrates the
temporal relations of the objects, defined in terms of the terminologies used by Allen [2].

6 of 14

Table 1. Object descriptions

Obj Name Type Obj Id Time To Live

Root 0 0

Bird Show video/mpeg 1 10

Bird Walk video/mpeg 2 6

Dummy 3 4

Bird Intro text/html 4 20

Seagull image/gif 5 5

Bird Song audio/basic 6 5

Table 2. Temporal relations

before

meets (2,5), (5,6)

overlaps (1,4)

during

starts (3,1)

finishes (6,4)

equals (1,2)

Finally, Fig.3 describes the MRG representation which corresponds to the temporal relations in Table. 2.

3.4 Using Our Temporal Framework

For supporting authors with editing the temporal structure of HPA documents, the composition manager utilizes
the services of the temporal manager and provides a tree-like temporal editor, whose content exactly reflects the
temporal graph structure (MRG). The two images below are screen shots of the temporal editor. The image on
the left shows objects by their IDs, and the one on the right shows objects by their types, with color pixmaps
corresponding to major MIME types (text, image, video, audio, etc.). Notice the similarity between the screen
dumps and Fig.3.

7 of 14

The temporal editor reflects only the relationships between objects, not the content of each object, that is, the
content need not exist in the temporal authoring process. This property enables authors to choose either a top
down or a bottom up approach to composition [6]. In the top down approach, authors first build the temporal
structure by creating nodes which represent objects in the MRG. Authors then create the synchronization links
between objects by drawing lines between the nodes in the graph. The final step is to provide the content of
objects by using various media-specific object editors. By contrast, the bottom up approach allows authors to
create the content of objects first, and then create the temporal relations between them.

The temporal authoring process starts with the creation of nodes in the MRG (the nodes correspond to the
buttons in the screen shots). Those nodes represent the objects in an HPA document. Next, one-way arrows are
drawn between nodes, reflecting the SerialLink relationships between corresponding objects. Similarly two-way
solid arrows and two-way dashed arrows are drawn to denote StartSync and EndSync relations, respectively.
The system also allows authors to create the three types of links in different orders; authors may first create
StartSync, then SerialLink. While adding every link between objects, the composition manager verifies that the
resulting graph is free of temporal conflicts. The attributes of an individual object may be specified by right
clicking on the corresponding button and selecting the appropriate menu option in the temporal editor. This is the
crucial step where an author specifies the ttl value of the object. Finally, the document generator is responsible
for generating the text representation of the document structure, which has been passed to it by the composition
manager. As a side note, authors are discouraged from editing HPA documents manually (using a text editor)
because of the inherent complexity of temporal logic. However, it is perfectly legal to change simple object
attributes such as src (described in section 5) by using a text editor, since it is convenient to do this kind of
modification offline (without invoking HPAS).

In the presentation process, the presentation manager receives the parsed document structure from the document
parser, then coordinates with the temporal manager to eliminate temporal inconsistencies. This is necessary
because the manual editing of HPA documents is allowed and errors could therefore be introduced. The resulting
documents may contain temporal relations not verified by the composition manager.

Its close integration with the temporal manager also allows the presentation manager to provide facilities that
supports start, pause, resume, and step operations. If the temporal validation of the document structure is
successful (or at least part of the document is validated), the presentation will be started and objects will be
activated according to the temporal information in the document. The pause operation temporarily stops the
presentation and all the active objects, while the resume operation continues the presentation and all the objects

8 of 14

stopped by pause. Finally, performing the step operation immediately terminates (deactivates) all the active
objects on the screen, and their children are started if they satisfy the activation policy.

A screen shot of HPAS' presentation window (browser) is shown in the next picture. It shows three video
objects (the starship `Enterprise' and the two birds), an image object (the flower), two rich text objects, and an
audio object (at the upper-right corner).

4. Spatial Synchronization

Many approaches exist for managing spatial synchronization in hypermedia documents. The simplest approach is
using absolute layout specification, where the geometry of an object is defined by the coordinates(x, y, width,
height). HTML takes a different approach. Based on the underlying text, it relies on control elements (list, table,
center, etc.) to manage the document geometry. However, these approaches are not sufficient for supporting
temporal-based multimedia presentations. In particular, HTML's layout elements (such as table) are static and do
not change over time.

Our approach allows the dynamic placement of objects by providing a time-dependant layout scheme, which
uses the notions of cell and area. While authoring, the composition manager evenly divides the document
window into a grid of cells, with the number of horizontal and vertical cells specified by the author (so the size of
each cell is fixed within a presentation). A rectangular group of cells forms an area, which may be occupied by
one object. The object is constrained by the area. The area does not resize itself to accommodate the object;
instead, the object is responsible for resizing itself to fit into the area. The layout and the number of areas on the
grid change with respect to time. At any point in time, there may be zero or more areas on the grid,
corresponding to zero or more regular objects. Dummy objects do not have areas.

For each object and its associated area, several geometric attributes may be defined. Here is an HPA file

9 of 14

fragment which describes the geometry of an object:

<obj id = 1 ... area = '0 0 5 4' geomUnit = grid
 topOffset = 1 align = hcenter ...> ... </obj>

The area of the above object starts at the cell in the upper-left corner of the document window and spans 5 cells
horizontally and 4 cells vertically. The top border of the object is 1 cell from its area's top border, and the object
itself is centered horizontally within its area.

The scheme above specifies only how an object may be placed within its area. Since several objects may
overlap one another at any time, we also need a mechanism for guaranteeing that associating an object with its
area does not produce the undesired overlapping effect. So obviously some form of validation is needed when an
author uses the spatial manager to define an object's area:

An object o can occupy an area a if either or both of the following hold:
a has no intersection with the areas of any other objects.
For every object c where c's area intersects with o's area, c belongs to the union of P and Q, where P is
the set of objects formed by o's ancestors and the ancestors' EndSync peers, and Q is the set of objects
formed by o's descendants and the descendants' StartSync peers.

It is obvious that the objects in P are deactivated before or at the activation time of o, and the objects in Q are
activated at or after the deactivation time of o. Therefore, it is not possible for o to overlap the objects in P or Q,
since they live in different time frames.

With the criteria above, a given object can occupy only a limited set of cells. This is too restrictive in some
situations. Therefore, we further extend our document architecture to incorporate the concept of scene. In the
spatial aspect, each scene defines its own grid layout, therefore objects in one scene are free from the spatial
constraints associated with objects in another scene. In the temporal aspects, each scene has its own temporal
graph, and there are no temporal relations between objects in two adjacent scenes, except that the objects in the
later scene are activated at or after the deactivation times of the objects in the previous scene.

In brief, scene provides logical groupings of objects within HPA documents, and the objects in each scene form a
complete presentation. Moreover, the breaking of a complicated HPA document into multiple scenes is
analogous to the dividing of a book into chapters. It provides a better organization of the document and allows
authors to edit subsections (scenes) of the document in any order. Furthermore, viewers may step through scenes
or randomly access particular scenes at will.

5. Framework and Objects

In contrast to traditional large monolithic applications, the HPAS environment provides a framework for
embedding components. Similar component programming models exist, such as CI Labs' OpenDoc and
Microsoft OLE. However, these models are heavy-weight and are not available on many Unix platforms.
Netscape's Plug-ins framework is light-weight and portable on most platforms, but it does not provide native
support for media conversion and editing, which are essential for the extensibility of the applications on top of the
framework. Our framework provides a simple but powerful application programming interface (API). The API is
specific to our environment and hence it is small and efficient. The system is not aware of any specific media
types. This design facilitates the transparent handling of different media streams. The components of our
framework include object presenters, object editors, and object converters. The framework itself does not

10 of 14

implement any components; it only provides a set of basic services to the components. The main ones are
network management, temporal and spatial synchronization service, which we have discussed in the previous
sections. We will describe network service in the implementation section.

The basic element of our environment, the HPA object (or hobject for short), is a network transparent entity
uniquely identified by a URL [4]. Each hobject has an associated type, which conforms to the MIME [5]
standard. There are two major categories of hobjects: ones with media streams and ones without media streams.
Examples of stream-based hobjects are JPEG images and MPEG videos. Streamless hobjects are typically
application configurations, such as a game setting for a multi-user tank game. Hoject attributes are specified in
both the temporal and spatial authoring processes, but there are several attributes that are not related to temporal
or spatial management. For example:

<obj id = 2 type = "video/mpeg" name = "Love Bird"
 src = "http://www.some.com/mpeg/bird.mpg"
 anchor = "http://www.goldfish.com/gold/" ...> ... </obj>

The type attribute specifies the MIME type of the hobject, the src attribute denotes the location of the content of
the hobject, and the anchor attribute defines the anchor represented by the hobject. As a side note, an hobject
with no type and no content is a dummy object.

5.1 Media Handler

Fundamental to our design is the close interaction between hobjects and media handlers (or mhandlers for
short), which are dynamically loaded modules that implement all of HPAS' media-specific capabilities. Hobjects
are passive entities; they contain only attributes and data streams. Mhandlers are active entities; they provide
operations such as displaying and editing hobjects. The system itself does not implement any mhandlers. All
handler modules are loaded into the system at run time. Mhandlers use the basic network service provided by
HPAS, and they are also free to implement their own network services. A single mhandler may choose to
support more than one MIME type, and it may implement presenting features, editing features, or both. Finally,
any hobject attributes that are not understood by HPAS are passed to mhandlers for further processing. This
allows authors to pass media-specific information to the mhandlers.

5.2 Presenter, Editor, and Converter

The components of the HPAS framework are object presenters, object editors, and object converters. Among
them, presenters are implemented solely by mhandlers; editors are either existing standalone applications or
modules implemented by mhandlers. Converters are simply external filters. The framework provides a
plug-and-play configuration interface to these components, so one immediate advantage is that adding or
removing components requires no reconstruction of the system. Furthermore, this design greatly increases the
system's extensibility, since the types of media objects that can be handled by HPAS are virtually unlimited.

Presenters are responsible for the inline displaying of objects, and editors are responsible for authoring the
content of objects. To implement a presenter, apart from being able to display a particular type of object, an
mhandler must provide certain operations, such as pause and resume. These two operations are called when the
presentation manager pauses and resumes an HPA presentation. To implement an editor, apart from providing
editing functions, an mhandler must be able to inform HPAS of its content modification state. Common operations
such as construction/destruction, stream downloading/uploading, and printing are required for both presenters
and editors. If an mhandler implements both presenter and editor, it should provide different interfaces for the
two. In particular, the editing part should have a popup window and a menubar.

11 of 14

Providing an HTML presenter allows HPAS to be used as a normal HTML browser, which is necessary
because the current Web infrastructure is based on HTML files. Also, it is possible to implement a Java Applet
presenter. In this case the Applet mhandler will implement a singleton Java interpreter, which is to be shared by
multiple instances of Applet presenters.

Object editors are usually well developed media-specific applications. This allows HPAS to exploit the powerful
features of existing applications. However, the drawback of this approach is the loose integration between HPAS
and the editors. For example, when HPAS wants to close an editor, it has no way of knowing whether the
content of the editor has been saved or not.

When no presenters or editors exist to handle a particular object stream, an object converter will be invoked to
operate on the stream, creating a stream with a different MIME type. The resulting stream is then passed over to
an appropriate presenter or editor for further processing. Converters are external programs written for generic
media conversion purposes.

5.3 User Interaction

System level user interactions are provided by the presentation manager through anchors. An anchored object is
just like any other object, except clicking on it will typically overlay the browser window with the content of the
entity pointed to by the anchor. The anchor is addressed by a URL [4], and may contain a fragment ID in the
form #fragment_id, which points to a subpart of the target entity. If the target entity is an HPA document, the
anchor may refer to a particular scene or even to an hobject within the scene. This allows a viewer to start
viewing the presentation from that particular scene or hobject.

Object level user interactions are solely implemented by presenters. Presenter writers may provide viewers with
any type of user interaction, as long as these interactions are permitted by the window system.

6. Implementation Issues

The framework implements a temporal scheduler to manage the activation and deactivation of hobjects. We
considered three approaches to accomplish this. In the first approach, upon the activation of each hobject, we
record the system time as the atime of the hobject. A polling loop periodically checks system time and compares
it with the atime of the hobject to decide if the hobject's ttl value is expired; among other things, the polling loop
also examines the three link attributes of the hobject, and activates and deactivates various hobjects as
appropriate. The second approach is completely event-driven. Since most user interface toolkits provide some
form of event loop, we rely on the event loop to provide scheduling services, in the form of timer events. The
third approach is to implement each active hobject as a thread, and synchronize the threads accordingly. Using a
polling loop as in the first approach is a waste of CPU time, since much computation is done within the loop, and
most rounds of the loop are wasted (no hobjects are activated or deactivated). In addition, thread interfaces are
different on many operating systems, and not all systems support re-entrant system calls. Therefore, we decided
to use the event-driven model to implement our temporal scheduler.

Besides the temporal scheduler, we also multiplex the network manager into the user interface event loop. This
approach allows the system to provide timer, network, and interface events in a single event loop. When
timer/network events are dispatched, the corresponding timer/network callbacks are called. An hobject may be
activated in either a timer callback or a network callback, whichever is later. (There are several types of timer
and network events; we are talking about the ones that may activate hobjects.) On the other hand, the

12 of 14

deactivation of hobjects can be triggered by timer events, media access events (such as end of media), and
exception events (such as network and media error).

The network manager is designed to provide generic network services. It listens to the network all the time.
Depending on the preferences of individual mhandlers, it can deliver data in a progressive fashion or write all the
data into files and then pass the filenames to the mhandlers. The most commonly used services from the network
manager are the HTTP `GET' and `POST' methods [3]. In addition, mhandlers may implement their own
network services, such as RTP [8] for video related mhandlers.

Mhandlers are implemented as shared libraries, which can be loaded into HPAS at runtime. Since HPAS is
single-threaded, media handlers should avoid using blocking system calls. When implementing a presenter, an
mhandler is responsible for saving its state while paused by the presentation manager. In particular, the mhandler
must save the excessive stream delivered to it while the presentation is paused. The reason is that in order to
improve performance, the network manager keeps sending bytes to the mhandler regardless of the state of the
presentation.

The system is written in C++, with the mhandler API in C, since we allow mhandlers to be written in C or C++.
The user interface is built with OSF/Motif. We have implemented an MPEG mhandler based on the MPEG2
decoder from the MPEG Software Simulation Group, an image mhandler, a rich text mhandler and an audio
mhandler based on the EuroBridge Widget Set. Finally, an HTML mhandler is implemented by using NCSA
Mosaic's HTML widget.

7. Conclusions and Future Work

In the past one and half years we have been working on the HPAS project to support the creation and
presentation of hypermedia documents. The system provides services for integrating pluggable components such
as presenters, editors, and converters. The basic elements of the environment, hobjects, are synchronized both
temporally and spatially during the authoring and presenting processes of HPA documents. The system is
particularly suited for presenting dynamic (but not text intensive) information on the Web, such as product/service
advertising, guided course work, etc.

In the future, we will enhance the mhandler API. In particular, we will try to provide some communication
mechanism between different mhandlers, which makes low level media-specific synchronization a possibility in
our framework. A simple example is send, which sends a message from one mhandler to another. Using this
primitive, the source mhandler may transfer data to the target mhandler, or it may request certain operations to be
performed on the target media handler. The send primitive should be flexible enough so that both synchronous
and asynchronous invocations are allowed. Finally, we will provide support for a wider range of applications by
developing more mhandlers.

8. Acknowledgment

We are very grateful to Harrick Vin and Donald Fussell. Without their support and encouragement, the project
would not exist. We would also like to thank Zaijin Guan for his participation in the early stage of the project, and
Wei Wei and Biao Zhang for their various suggestions and help throughout the development of the project.
Finally, we would like to give special thanks to the reviewers Paul McJones, Marc Brown, Marc Najork,
Krishna Bharat, Cynthia Hibbard, Hseuping Chen, Xue Lu, and Huiqun Liu for their timely advice on the paper.

13 of 14

References

[1] Philipp Ackermann.
Direct Manipulation of Temporal Structures in a Multimedia Application Framework.
ACM Multimedia 94 Proceedings, pp. 51-58, October 1994.

[2] James. F. Allen.
Maintaining Knowledge about Temporal Intervals.
Communications of the ACM, vol.26. no.11, pp. 832-843. November 1983.

[3] T. Berners-Lee, R. Fielding, and H. Frystyk.
Hypertext Transfer Protocol -- HTTP/1.0, RFC1945. May 1996.

[4] T. Berners-Lee, L. Masinter, and M. McCahill.
Uniform Resource Locators (URL), RFC1738. December 1994.

[5] N. Borenstein and N. Freed.
MIME (Multipurpose Internet Mail Extensions), RFC1341. June 1992.

[6] Lynda Hardman, Guido van Rossum, and Dick C.A. Bulterman.
Structured Multimedia Authoring.
ACM Multimedia 93 Proceedings, pp. 283-290, August 1993.

[7] Thomas D.C. Little, and Arif Ghafoor.
Synchronization and Storage Models for Multimedia Objects.
IEEE Journal on Selected Areas in Communications, vol.8, no.3, pp. 413-427, April 1990.

[8] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.
RTP: A Transport Protocol for Real-Time Applications, RFC1889. January 1996.

14 of 14

