SRC Technical Note

1997-3

May 6, 1997

Hyper media Presentation and Authoring System

Jin Yu and Yuanyuan Xiang

Systems Resear ch Center
130 Lytton Avenue
Palo Alto, CA 94301
http:/Amww.research.digital.com/SRC/

Copyright 1997 Digita Equipment Corporation. All rights reserved

1. Introduction

The tremendous growth in the number of Internet gpplicationsis driven by the use of rich media such asimages,
audio, and videos for representing and exchanging information. The result is the merging of hypertext and
multimedia, or hypermedia. Hypermedia documents (eg. HTML files) function as containers for hypermedia
objects, which are network transparent entities with a variety of media types, such as MPEG, GIF, RTF, etc.
The composition and presentation of hypermedia documents presents us with many new challenges, because of
the dynamic nature of multimedia and the large variety of mediatypes. Specificdly, a hypermedia sysem must

meet the following requirements[1]:

agrLODE

high-level tempora synchronization between hypermedia objects
the provision of time-dependent patid synchronization within the hypermedia document architecture
the integration and transparent handling of various media types
network transparency in document and object retrieva

asgmple but powerful user interface manipulating the tempord and spatid information within the
hypermedia document

ld14

Exiging HTML authoring and browsing tools provide static soatia management by using relative geometry based
on the underlying text. Emerging technologies such as Java Applets, JavaBeans, and Netscape Plug-ins extend
the basic capabilities of HTML tools. However, the combination of the technologies and the HTML toolsis il
not sufficient to represent temporal-based multimedia presentations with associated dynamic spatid layout,
because they are congrained by the gtatic nature of HTML. Although many extensions have been made, HTML
ill provides primarily static layout controls.

Our gpproach eliminates the traditional concept of page, and provides tempora synchronization of distributed
media objects within a hypermedia document. With this gpproach, our system dlows the spatid layout of the
document to be changed dynamicaly with respect to time. In addition, the integration of the browsing and
authoring environment gives users a powerful yet smple way to graphically congtruct and manage hypermedia
objects and their containing documents.

The HPAS environment supports the structure-based composition and the dynamic presentation of the HPA
(Hypermedia Presentation/Authoring) document architecture, which conforms to the SGML standard. An HPA
document is composed of alist of HPA objects, which are identified by Uniform Resource Locators [4]. Each
object can have an associated media stream (but this is not required) with an gppropriate MIME type. In
addition, the objects within the document are temporaly related and every object carries its own spatid layout
information.

The next section outlines the architecture of the system. Sections 3 and 4 discuss the tempora and spatid
management. Section 5 describes HPA objects in detall. Findly, we briefly discuss the implementation issues and
future work in sections6 and 7.

2. Architecture and System Overview

The globa picture of HPAS is shown in Fig.1. The presentation subsystem comprises the components on the |eft
hand side, and the authoring subsystem comprises the components on the right hand side. The tempord and
spatid managers are shared by both subsystemns. The network manager provides both uploading and
downloading servicesto the rest of the system. Our model permits multiple instances of those components. For
example, severa browser windows, or presentation managers may be active a the same time.

The presentation subsystem is the browser part of HPAS. Coordinating with the tempora and spatid manage,
the presentation manager drives the various object presenters to display objectsinto the browser window. The
authoring subsystem dlows authors to graphicaly construct HPA documents. The composition manager
communicates with tempora and spatial managers to synchronize the objects within HPA documents. It also
manages the object editors, which are respongble for the authoring of object media data.

20014

HEPA
CoCUMWENT

e

Document Parser

™

Dacurment & enerator

Metwork
banager

Prezentation Manager Cormpositon Manager

Ternporal
Manager

Spanal
Manager

Object Presenters Object Editors

‘\ Object /

Converters

Fig.1 General Architecture of HPAS

3. Temporal Synchronization

A crucid gep in designing multimedia gpplicationsis to guarantee that the compogtion of multiple monomediais
synchronized temporaly. There are two digtinguished time synchronization levels between objectsin a
hypermedia document, namely low-level media-specific synchronization and high-level interobject
synchronization. The low-level synchronization requires media-specific timing constraints to be satisfied. For
example, gpeech (audio) should match the motion of lips (video). On the other hand, the interobject
synchronization specifies only the tempora congtraints of the congtruction, lifetime, and destruction of objects.
Currently, we are concerned only with interobject synchronization, because low-level synchronization requires the
knowledge of specific mediatypes.

Traditionally, there have been severd gpproaches to achieving tempora synchronization between objects.
Scripting-based systems dlow authors to explicitly program timing information. During presentation, the systems
interpret the scripts and perform actions specified in the scripts. This approach is powerful, but usudly requires
proficiency in programming, which severdly limits the range of authors. Timeline-based sysems mode a
conceptud timeline. Authors smply place objects to be presented on this timeline. However, since this approach
requires objects to be placed rddive to the time axis, it is not well suited for operations such as moving, copying,
or ddeting parts of the presentation. Furthermore, neither of the approaches dlows direct and intuitive
manipulations of the tempora structure of the hypermedia document. In our gpproach, tempord information is
described in terms of object relations; that is, each object is described in terms of other related objects. Thisis
well suited for presentations with distributed media objects, since the elgpsed time of each object depends on
both the network bandwidth and CPU speed. In addition, HPAS aso provides users with a powerful interface to

3014

access and manipul ate the tempord information in HPA documents. The following sections describe the tempord
synchronization mechanism in detall.

3.1 Temporal Interval and MRG

In our framework, each object is associated with atempord interva, which is characterized as a nonzero
duration of time in seconds. Given any two tempord intervas, there are thirteen mutudly exclusive relationships
[2]. According to Little and Ghafoor [7], the tempora relations can be represented as Fig.2a. The figure shows

only seven of the thirteen relations since the remaining ones are inverse relations. For indance, after istheinverse
reletion of before.

fadefore By [5 |ea =] Py | [Pa | (o—[7|
o, meess 8 [P | P [Pa |—={rg |
P (3,

B overfaps F13 " ;

oy L # Q"

| Pp | P i
&

psrsr, [B J= P O

| Pg | Pg s
T

B, finishes PB *‘—L} <
| Pg | L 23 |
1Pa b

B, equals P r'

) T | Py |
Fig.2 a) Temporal relations (after [7]) b} Corresponding MRG

To represent our temporal model, we define aset of links between two objects, p, and p,:

* (pg SerialLink p,): thetempord interva I(p,) meets|(p,). In other words, p, isthe parent of p,, and p, is
the child of p;.

* (py StartSync p,): thetempord interva [(p,) and I(p,) share the same starting point.

* (py EndSync p,): thetempord interval 1(p,) and I (p,) share the same ending point.

4014

Besides links each object has a user-defined attribute “time to live, or ttl, which specifies how long the object
may be active on the screen. In addition, our model dso defines the notion of dummy object. A dummy object
does not have any content, nor does it have an associated type. Such an object can be used to represent atime
delay by defining itsttl attribute.

With the definitions of SerialLink, StartSync, EndSync, ttl, and dummy object, we can now introduce the
notion of Media Relation Graph (MRG), as shown in Fig.2b. The MRG in Fig.2b corresponds to the temporal
reaionsillugrated in [7] (Fig.28). In our MRG, aone-way arrow denotes the SerialLink operator, where the
left hand side operand is the object at the starting end of the arrow and the right hand side operand is the object
being pointed to by the arrow. Smilarly, the StartSync operator is denoted by atwo-way solid arrow, and the
EndSync operator is represented by atwo-way dashed arrow. Findly, arectangular node represents a regular
object and around node represents a dummy object. By using the notions of SerialLink, StartSync, EndSync,
ttl, and dummy object, we can use MRG to represent al the thirteen tempord rdationships defined by Allen [2].

3.2 Object Activation and Deactivation

This section describes the object activation and deactivation policies. Before we sate the policies, severd
concepts need to be defined:

* Theactivation time of an object, or atime, is the time when the object appear s on the screen. At that
time, the object is said to be activated.

* The deactivation time of an object, or dtime, is the time when the object disappear s from the screen.
At that time, the object is said to be deactivated.

* The élgpsed time of an object, or etime, isthe difference between dtime and atime; etimeis said to be
the temporal interval of the object.

* The content time, or ctime of an object, isthe time needed to present the object's entire media stream.

Notethat if an object'sttl vaueis greater than its ctime, it will Say idly on the screen after ctimeis reached and
before ttl is expired.

We dso define the starting point of an HPA presentation to be the root object, which is a dummy object with the
vaue of itsttl attribute being zero. The root object is deactivated once the presentation starts. In addition, for
every object in the presentation (excluding the root object itsdlf), an implicit SerialLink exists between the root
and the object.

Now we can introduce the activation and deactivation policies.

* An object may be activated if both of the following hold:
1. The object's parents and the parents EndSync peers are al deactivated.
2. All of the object's StartSync peers satisfy the condition above.

* Object deactivationis governed by the following rules:
1. The object must be deactivated with al of its EndSync peers at the same time.
2. For the object and dl of its EndSync peers, etimeis greater than or equal to ttl.
3. Thepriority of ttl ishigher than that of ctime.
4. If ttl isnot specified, thevaue of ctimeisassgnedtoit.

Even at the time that both activation policies are satisfied, the system might not be able to activate the object

50f 14

immediately, Snce a that time the object's media stream may not be readily available from the network. This
Stuation will be explained further in section 6.

3.3 MRG Example

Let's congder the fallowing sample code from an HPA file:

& tobj id = 0 name = "Root" ...
serialLink = "1 2 3" timeToLive = 0> </obj>
& tobj id = 1 nane = "Bird Show' type = "video/ npeg" ..
startSync = '2 3' endSync = '2' tineTolLive = 10> </obj>
& tobj id = 2 nane "Bird Wal k" type = "video/ npeg" ...

serialLink ='5" startSync = "'1" endSync = '1' tinmeToLive = 6> </obj>
& tobj id = 3 name = "Dumy" ..
serialLink = "4" startSync = '1' timeToLive = 4> </obj>
& tobj id =4 name = "Bird Intro" type = "text/htm " ...
endSync = '6' tineToLive = 20> ... </obj>
& tobj id =5 name = "Seagull" type = "image/gif" ...
seriallink ="'6" tinmeToLive = 5> </obj>
& tobj id = 6 nane = "Bird Song" type = "audi o/ basic" ...
endSync = '4' tineToLive = 5> </obj>

In the code segment above, each obj eement describes an HPA object. The serialLink attribute of an object
specifies the object's children, which are represented by the list of object IDs. The syntaxes of startSync and
endSync areidenticd to that of serialLink. Object IDs are a sequence of non-negative integers sarting from
zero, which represents the root object. The compaosition manager is responsible for assigning object IDs.

Table 1 shows another representation of the objects described in the code fragment, and Table 2 illudtrates the
tempord relations of the objects, defined in terms of the terminologies used by Allen [2].

60 14

Table 1. Object descriptions

\Obj Name\ Type |Obj|d |TimeToLive
Root 0o | o0
BirdShow |video/mpeg | 1 | 10
BirdWalk |videompeg| 2 | 6
Dummy | 3 | 4
|BirdIntro | tehtml | 4 | 20
| Seagull | imegeigt | 5 [5
|BirdSong |audiobasic| 6 | 5

Table 2. Temporal relations

| before

| mests [(25), (5.6)

overlaps | (1,4)

| duing

‘ garts | (3,1) Fy.3 Example MRG
finishes | (6,4)

L equas | (1.2)

Finaly, Fig.3 describes the MRG representation which corresponds to the tempord relationsin Table. 2.
3.4 Using Our Temporal Framework

For supporting authors with editing the tempora structure of HPA documents, the compaosition manager utilizes
the services of the tempora manager and provides atree-like tempora editor, whose content exactly reflects the
tempora graph structure (MRG). The two images below are screen shots of the tempora editor. The image on
the left shows objects by their IDs, and the one on the right shows objects by their types, with color pixmaps
corresponding to mgjor MIME types (text, image, video, audio, etc.). Notice the Smilarity between the screen
dumps and Fig.3.

7014

= HPA ESfaF [

L]
)
b
L)

TN

qE

o

WP e——

L

rd

£
o,
Fa
i
[13

fedd | Dl 8yl By Type Hew| Show| Mapping| Quit| Fodd | Dol By Id By Typa Mew Show| Mapping| Quiz|
Aasfio Object: Bird Somg: 1d: 6 Wideo Object: Bird Walk; d: 2

The tempord editor reflects only the relationships between objects, not the content of each object, that is, the
content need not exist in the tempora authoring process. This property enables authors to choose either atop
down or a bottom up gpproach to composition [6]. In the top down gpproach, authors first build the temporal
dructure by creating nodes which represent objects in the MRG. Authors then create the synchronization links
between objects by drawing lines between the nodes in the graph. The find step isto provide the content of
objects by using various media-specific object editors. By contrast, the bottom up approach alows authors to
create the content of objects first, and then create the tempord relations between them.

The temporad authoring process sarts with the creation of nodes in the MRG (the nodes correspond to the
buttons in the screen shots). Those nodes represent the objectsin an HPA document. Next, one-way arrows are
drawn between nodes, reflecting the Serial Link relationships between corresponding objects. Smilarly two-way
solid arrows and two-way dashed arrows are drawn to denote StartSync and EndSync relaions, repectively.
The system a0 dlows authors to cregte the three types of links in different orders, authors may first creste
SartSync, then SerialLink. While adding every link between objects, the composition manager verifies thet the
resulting graph is free of tempora conflicts. The attributes of an individua object may be specified by right
clicking on the corresponding button and selecting the appropriate menu option in the tempora editor. Thisisthe
crucid step where an author specifiesthe ttl vaue of the object. Findly, the document generator is responsible
for generating the text representation of the document structure, which has been passed to it by the composition
manager. As asde note, authors are discouraged from editing HPA documents manudly (using atext editor)
because of the inherent complexity of tempora logic. However, it is perfectly lega to change smple object
attributes such as src (described in section 5) by using atext editor, Snceit is convenient to do this kind of
modification offline (without invoking HPAS).

In the presentation process, the presentation manager receives the parsed document structure from the document
parser, then coordinates with the tempora manager to eiminate tempora inconsstencies. Thisis necessary
because the manud editing of HPA documentsis alowed and errors could therefore be introduced. The resulting
documents may contain tempora relaions not verified by the composition manager.

Its close integration with the tempord manager dso dlows the presentation manager to provide facilities that
supports start, pause, resume, and step operations. If the temporal validation of the document Structureis
successful (or &t least part of the document is vaidated), the presentation will be started and objects will be
activated according to the tempora information in the document. The pause operation temporarily stops the
presentation and dl the active objects, while the resume operation continues the presentation and dl the objects

80f 14

stopped by pause. Findly, performing thestep operation immediately terminates (deactivates) dl the active
objects on the screen, and ther children are started if they satisfy the activation policy.

A screen shot of HPAS presentation window (browser) is shown in the next picture. It shows three video
objects (the starship "Enterprise’ and the two birds), an image object (the flower), two rich text objects, and an
audio object (at the upper-right corner).

File Edt Go Bookmark Editors dAushoring Options

= e izl
‘> 0a h
LWL Address: hupihn.ma.mmsxdﬂd’.ﬂ.ﬂal:.bﬂ

1

Ly iy g oy

% J
L1

"®R ..o The E

Play | L gwp

4. Spatial Synchronization

Many gpproaches exist for managing patial synchronizetion in hypermedia documents. The Smplest gpproach is
using absolute layout specification, where the geometry of an object is defined by the coordinates(x, y, width,
height). HTML takes adifferent gpproach. Based on the underlying text, it relies on control eements (ligt, table,
center, etc.) to manage the document geometry. However, these approaches are not sufficient for supporting
temporal-based multimedia presentations. In particular, HTML's layout elements (such astable) are static and do
not change over time.

Our gpproach alows the dynamic placement of objects by providing atime-dependant layout scheme, which
usesthe notions of cell and area. While authoring, the composition manager evenly divides the document
window into agrid of cdls, with the number of horizontal and vertica cels specified by the author (so the Size of
each cell isfixed within apresentation). A rectangular group of cdlsformsan area, which may be occupied by
one object. The object is constrained by the area. The area does not resize itself to accommodate the object;
instead, the object is reponsible for resizing itsdlf to fit into the area. The layout and the number of areason the
grid change with respect to time. At any point in time, there may be zero or more areas on the grid,
corresponding to zero or more regular objects. Dummy objects do not have areas.

For each object and its associated area, severd geometric attributes may be defined. Here is an HPA file

90 14

fragment which describes the geometry of an object:

& tobj id=1... area="'00 5 4" geonbnit = grid
topOffset = 1 align = hcenter ...> ... </obj>

The area of the above object starts at the cell in the upper-left corner of the document window and spans 5 cells
horizontaly and 4 cells verticaly. The top border of the object is 1 cell from its area's top border, and the object
itsdf is centered horizontdly within its area.

The scheme above specifies only how an object may be placed within its area. Since severa objects may
overlap one ancther a any time, we aso need a mechaniam for guaranteeing that associating an object with its
area does not produce the undesired overlapping effect. So obvioudy some form of vaidation is needed when an
author uses the spatial manager to define an object's area:

An object 0 can occupy an area a if ether or both of the following hold:

< ahasno intersection with the areas of any other objects.

* For every object c where C's area intersectswith o's area, ¢ bdongsto theunion of P and Q, where P is
the set of objectsformed by o's ancestors and the ancestors EndSync peers, and Q is the set of objects
formed by 0's descendants and the descendants StartSync peers.

It isobvious that the objectsin P are deactivated before or at the activation time of o0, and the objectsin Qare
activated at or after the desctivation time of 0. Therefore, it isnot possble for o to overlap the objectsin P or Q,
sncethey livein different time frames.

With the criteria above, a given object can occupy only alimited set of cdls. Thisistoo redtrictive in some
Stuations. Therefore, we further extend our document architecture to incorporate the concept of scene. In the
spatiad aspect, each scene defines its own grid layout, therefore objects in one scene are free from the spatia
congtraints associated with objectsin another scene. In the tempord aspects, each scene hasits own temporal
graph, and there are no temporal relations between objectsin two adjacent scenes, except that the objectsin the
later scene are activated at or after the deactivation times of the objects in the previous scene.

In brief, scene provides logica groupings of objects within HPA documents, and the objects in each sceneform a
complete presentation. Moreover, the breaking of acomplicated HPA document into multiple scenesis
andogous to the dividing of abook into chapters. It provides a better organization of the document and alows
authors to edit subsections (scenes) of the document in any order. Furthermore, viewers may step through scenes
or randomly access particular scenes at will.

5. Framework and Objects

In contragt to traditiona large monolithic gpplications, the HPAS environment provides aframework for
embedding components. Similar component programming models exigt, such as Cl Labs OpenDoc and
Microsoft OLE. However, these models are heavy-weight and are not available on many Unix platforms.
Netscape's Plug-ins framework is light-weight and portable on most platforms, but it does not provide native
support for media conversion and editing, which are essentid for the extensibility of the gpplications on top of the
framework. Our framework provides asmple but powerful gpplication programming interface (AP1). The AP is
gpecific to our environment and hence it is small and efficient. The system is not aware of any specific media
types. This design facilitates the trangparent handling of different media streams. The components of our
framework include object presenters, object editors, and object converters. The framework itself does not

100 14

implement any components; it only provides a set of basic services to the components. The main ones are
network management, tempord and spatid synchronization service, which we have discussed in the previous
sections. We will describe network service in the implementation section.

The basic dement of our environment, the HPA object (or hobject for short), is anetwork transparent entity
uniquely identified by a URL [4]. Each hobject has an associated type, which conformsto the MIME [5]
sandard. There are two mgor categories of hobjects: ones with media streams and ones without media streams.
Examples of stream-based hobjects are JPEG images and MPEG videos. Streamless hobjects are typically
application configurations, such as a game setting for amulti-user tank game. Hoject attributes are specified in
both the tempora and spatia authoring processes, but there are severd attributes that are not related to tempora
or spatid management. For example:

& tobj id = 2 type = "video/ npeg" nanme = "Love Bird"
src = "http://ww. sorme. com npeg/ bi rd. npg"
anchor = "http://ww. gol dfish.comgold/" ...> ... </obj>

The type atribute specifies the MIME type of the hobject, the src attribute denotes the location of the content of
the hobject, and the anchor attribute defines the anchor represented by the hobject. As a Sde note, an hobject
with no type and no content is a dummy object.

5.1 Media Handler

Fundamenta to our design is the close interaction between hobjects and media handlers (or mhandlers for
short), which are dynamically loaded modules that implement al of HPAS media-pecific capabilities. Hobjects
are passive entities; they contain only attributes and data streams. Mhandlers are active entities; they provide
operations such as displaying and editing hobjects. The system itself does not implement any mhandlers. All
handler modules are loaded into the system at run time. Mhandlers use the basic network service provided by
HPAS, and they are ds0 free to implement their own network services. A sngle mhandler may choose to
support more than one MIME type, and it may implement presenting features, editing fegtures, or both. Findly,
any hobject attributes that are not understood by HPAS are passed to mhandlers for further processing. This
alows authors to pass media-specific information to the mhandlers.

5.2 Presenter, Editor, and Converter

The components of the HPAS framework are object presenters, object editors, and object converters. Among
them, presenters are implemented solely by mhandlers; editors are either existing standalone gpplications or
modules implemented by mhandlers. Converters are Imply externd filters. The framework providesa
plug-and-play configuration interface to these components, SO one immediate advantage is that adding or
removing components requires no reconstruction of the system. Furthermore, this design greatly increases the
system's extenshility, sSince the types of media objects that can be handled by HPAS are virtudly unlimited.

Presenters are responsible for the inline displaying of objects, and editors are responsible for authoring the
content of objects. To implement a presenter, apart from being able to display a particular type of object, an
mhandler must provide certain operations, such as pause and resume. These two operations are called when the
presentation manager pauses and resumes an HPA presentation. To implement an editor, gpart from providing
editing functions, an mhandler must be able to inform HPAS of its content modification state. Common operations
such as congtruction/destruction, stream downloading/uploading, and printing are required for both presenters
and editors. If an mhandler implements both presenter and editor, it should provide different interfaces for the
two. In particular, the editing part should have a popup window and a menubar.

1o 14

Providing an HTML presenter dlows HPAS to be used asanorma HTML browser, which is necessary
because the current Web infrastructure is based on HTML files. Also, it is possible to implement a Java Applet
presenter. In this case the Applet mhandler will implement a sSingleton Javainterpreter, which is to be shared by
multiple instances of Applet presenters.

Object editors are usudly well developed media-specific gpplications. This dlows HPAS to exploit the powerful
features of exigting applications. However, the drawback of this approach isthe loose integration between HPAS
and the editors. For example, when HPAS wants to close an editor, it has no way of knowing whether the
content of the editor has been saved or not.

When no presenters or editors exist to handle a particular object stream, an object converter will be invoked to
operate on the stream, creating a stream with a different MIME type. The resulting stream is then passed over to
an appropriate presenter or editor for further processing. Converters are externa programs written for generic
media conversion purposes.

5.3 User Interaction

System leved user interactions are provided by the presentation manager through anchors. An anchored object is
just like any other object, except dicking onit will typicaly overlay the browser window with the content of the
entity pointed to by the anchor. The anchor is addressed by a URL [4], and may contain afragment ID in the
form #fragment_id, which points to a subpart of the target entity. If the target entity isan HPA document, the
anchor may refer to a particular scene or even to an hobject within the scene. This dlows a viewer to dart
viewing the presentation from that particular scene or hobject.

Object level user interactions are solely implemented by presenters. Presenter writers may provide viewers with
any type of user interaction, as long as these interactions are permitted by the window system.

6. Implementation | ssues

The framework implements atemporal scheduler to manage the activation and deectivation of hobjects. We
considered three gpproaches to accomplish this. In the first approach, upon the activation of each hobject, we
record the system time as the atimeof the hobject. A polling loop periodically checks system time and compares
it with the atime of the hobject to decide if the hobject's ttl vaue is expired; among other things, the polling loop
aso examines the three link attributes of the hobject, and activates and deactivates various hobjects as
gppropriate. The second approach is completely event-driven. Since most user interface toolkits provide some
form of event loop, we rely on the event loop to provide scheduling services, in the form of timer events. The
third approach is to implement each active hobject as a threed, and synchronize the threads accordingly. Using a
polling loop asin the firgt gpproach is awagte of CPU time, snce much computation is done within the loop, and
most rounds of the loop are wasted (no hobjects are activated or deactivated). In addition, thread interfaces are
different on many operating systems, and not al systems support re-entrant system calls. Therefore, we decided
to use the event-driven model to implement our tempora scheduler.

Begdes the tempord scheduler, we dso multiplex the network manager into the user interface event loop. This
approach dlows the system to provide timer, network, and interface eventsin a single event loop. When
timer/network events are dispatched, the corresponding timer/network callbacks are caled. An hobject may be
activated in ether atimer callback or a network calback, whichever islater. (There are severd types of timer
and network events, we are talking about the ones that may activate hobjects.) On the other hand, the

120 14

deactivation of hobjects can be triggered by timer events, media access events (such as end of media), and
exception events (such as network and media error).

The network manager is designed to provide generic network services. It lisens to the network al the time.
Depending on the preferences of individua mhandlers, it can deliver datain a progressive fashion or write dl the
datainto files and then pass the filenames to the mhandlers. The most commonly used services from the network
manager arethe HTTP "GET' and "POST" methods [3]. In addition, mhandlers may implement their own
network services, such as RTP [8] for video reated mhandlers.

Mhandlers are implemented as shared libraries, which can be loaded into HPAS a runtime. Since HPAS is
single-threaded, media handlers should avoid using blocking system cdls. When implementing a presenter, an
mhandler is responsible for saving its state while paused by the presentation manager. In particular, the mhandler
must save the excessive stream delivered to it while the presentation is paused. The reason isthat in order to
improve performance, the network manager keeps sending bytes to the mhandler regardless of the Sate of the
presentation.

The system iswritten in C++, with the mhandler API in C, since we dlow mhandlersto be written in C or C++.
The user interface is built with OSF/Motif. We have implemented an MPEG mhandler based on the MPEG2
decoder from the MPEG Software Smulation Group, an image mhandler, arich text mhandler and an audio
mhandler based on the EuroBridge Widget Set. Findly, an HTML mhandler isimplemented by usng NCSA
Mosac's HTML widget.

7. Conclusions and Future Work

In the past one and half years we have been working on the HPAS project to support the creation and
presentation of hypermedia documents. The system provides services for integrating pluggable components such
as presenters, editors, and converters. The basic eements of the environment, hobjects, are synchronized both
temporaly and spatidly during the authoring and presenting processes of HPA documents. The system is
particularly suited for presenting dynamic (but not text intensve) informeation on the Web, such as product/service
advertisng, guided course work, etc.

In the future, we will enhance the mhandler API. In particular, we will try to provide some communicetion
mechanism between different mhandlers, which makes low level media-specific synchronization a possibility in
our framework. A smple example is send, which sends a message from one mhandler to another. Using this
primitive, the source mhandler may transfer data to the target mhandler, or it may request certain operationsto be
performed on the target media handler. The send primitive should be flexible enough o that both synchronous
and asynchronous invocetions are dlowed. Findly, we will provide support for awider range of applications by
developing more mhandlers.

8. Acknowledgment

We are very grateful to Harrick Vin and Donad Fussell. Without their support and encouragement, the project
would not exist. We would aso like to thank Zaijin Guan for his participation in the early stage of the project, and
We Wel and Biao Zhang for their various suggestions and help throughout the development of the project.
Findly, we would like to give specid thanks to the reviewers Paul McJones, Marc Brown, Marc Ngork,
Krishna Bharat, Cynthia Hibbard, Hseuping Chen, Xue Lu, and Huiqun Liu for their timely advice on the paper.

130f 14

References

[1] Philipp Ackermann.
Direct Manipulation of Tempord Structures in a Multimedia Application Framework.
ACM Multimedia 94 Proceedings, pp. 51-58, October 1994.

[2] James. F. Allen.
Maintaining Knowledge about Tempord Intervas.
Communications of the ACM, vol.26. no.11, pp. 832-843. November 1983.

[3] T. Berners-Lee, R. Fielding, and H. Frystyk.
Hypertext Transfer Protocol -- HTTP/1.0, RFC1945. May 1996.

[4] T. Berners-Lee, L. Masinter, and M. McCahill.
Uniform Resource Locators (URL), RFC1738. December 1994.

[5] N. Borenstein and N. Freed.
MIME (Multipurpose Internet Mail Extensions), RFC1341. June 1992.

[6] Lynda Hardman, Guido van Rossum, and Dick C.A. Bulterman.
Structured Multimedia Authoring.
ACM Multimedia 93 Proceedings, pp. 283-290, August 1993.

[7] ThomasD.C. Little, and Arif Ghafoor.
Synchronization and Storage Modd s for Multimedia Objects.
|EEE Journal on Selected Areas in Communications, vol.8, no.3, pp. 413-427, April 1990.

[8] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.
RTP: A Transport Protocol for Real-Time Applications, RFC1889. January 1996.

14014

